Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.24.22274200

ABSTRACT

Background: Administration of plasma therapy may contribute to viral control and survival of COVID-19 patients receiving B-cell depleting agents that hinder the endogenous humoral response. However, little is known on the impact of anti-CD20 pre-exposition and the use of different sources of plasma (convalescent versus vaccinated) on the kinetics of SARS-CoV-2-specific antibodies and viral evolution after plasma therapy. Methods: Eligible COVID-19 patients (n = 36), half of them after anti-CD20 targeted therapy, were treated with therapeutic plasma from convalescent (n = 17) or mRNA-vaccinated (n = 19) donors. Each plasma-transfused patient was thoroughly monitored over time by anti-S IgG quantification and whole-genome SARS-CoV-2 sequencing. Results: The majority of anti-CD20 pre-exposed patients (15/18) showed progressive declines of anti-S protein IgG titers following plasma therapy, indicating that they mostly relied on the passive transfer of anti-SARS-CoV-2 antibodies. Such antibody kinetics correlated with prolonged infection before virus clearance, contrasting with the endogenous humoral response predominantly present in patients who had not received B-cell depleting agents (15/18). No relevant differences were observed between patients treated with plasma from convalescent and/or vaccinated donors. Finally, 4/30 genotyped patients showed increased intra-host viral evolution and 3/30 included 1 to 4 spike mutations, potentially associated to immune escape. Conclusions: Convalescent and/or vaccinated plasma therapy may provide anti-SARS-CoV-2 antibodies and clinical benefit to B-cell depleted COVID-19 patients. Only a limited number of patients acquired viral mutations prior to clinical recovery, yet our study further emphasizes the need for long-term surveillance for intra-host variant evolution, to guide best therapeutic strategies.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.11.21266107

ABSTRACT

Genome sequences allow quantification of changes in case introductions from abroad and local transmission dynamics. We sequenced 11,357 SARS-CoV-2 genomes from Switzerland in 2020 - the 6th largest effort globally. Using these data, we estimated introductions and their persistence throughout 2020. By contrasting estimates with null models, we estimate at least 83% of introductions were adverted during Switzerland's border closures. Further, transmission chain persistence roughly doubled after the partial lockdown was lifted. Then, using a novel phylodynamic method, we suggest transmission in newly introduced outbreaks slowed 36 - 64% upon outbreak detection in summer 2020, but not in fall. This could indicate successful contact tracing over summer before overburdening in fall. The study highlights the added value of genome sequencing data for understanding transmission dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL